Blog update

I have just updated my blog from Blogger.com to a WordPress blog hosted on my Synology DS1515 server. I have manually exported much of the text and images from my old site to the WordPress blog, therefore a lot of the formatting may not appear correct. I will gradually correct the formatting as I find time. I realize it’s been several years since I updated my blog site, however I intend to post more regularly going forward. I have a lot of content planned over the next several months, so stay tuned!

Belize Update

I realize I’ve been kind of quiet about it on my blog, but for the next few months, I will be in Belize learning electronics from my Uncle, who works quite a bit with electronics. Today is close to my third week in Belize, and it’s been pretty busy so far. I don’t have much opportunity to use the internet, so that’s why I’m just now writing for the first time.

Living out here in the jungle, there are no public utilities, so my Aunt and Uncle provide their own infrastructure. For electricity, the house is powered off of two large arrays of solar panels, which charge an array of 12 lead-acid batteries. The DC voltage is converted into 120 V AC supply using a converter and inverter. During cloudy days and days during heavy energy demand such as when the washer and dryer are being used, a gas generator is used to power the house up. I’ve found I have to be very careful to turn off lights behind me and unplug all unused electronics, because it is easy to overload the system and cause it to shut down. I simply need to plug in my laptop sometimes, and the entire house loses power.

Water is collected from rain water. The roof of the house is designed so all the water that hits the roof flows into gutters, and is collected in large tanks. The water is then heavily filtered and supplied to the house at 40 psi. There is no hot water, so all my showers have been cold lately; it’s not a big deal in this climate, anyway. Right now, I’m staying in the guest house, which is its own separate building apart from the main house, consisting of a bedroom and bathroom. The house has it’s own separate water collection system, and the electricity is supplied using an extension cord from the main house.

The first few days here, I worked through a few Electrical Engineering problems, refreshing myself on concepts that have been taught to me during my time at the University of Washington. After my crash refresher course, I was put on a project of getting a 6502 microprocessor emulator device my Uncle built before I was even born to work again, and to upgrade the memory on the board. Originally, the project entailed just getting the circuit working. I was a bit intimidated looking at the tangled mass of wires, some of which have become disconnected, so I need to figure out where they used to go. Also, I was relatively new to soldering when I came down, and the last couple weeks has been a crash course into how to solder together prototype circuits. Soon, the project evolved into modifying the circuit to include an updated SRAM, since they evolved since he designed the circuit. Later, I found there were major revisions to the circuitry I needed to make to cause the circuit to run properly, so I ended up taking a lot of the circuitry apart and rebuilding it, and improved on the design quite a bit. I’m in the process of testing the logic and rewiring the circuit, and I have a feeling this project might take a while longer before I’m even ready to start programming it with Forth (a stack-based microcontroller programming language which very few people use, because it was oversold in the 1970’s). After that, I might design a control circuit for a gas generator, which automatically starts and shuts down the generator to ensure adequate battery voltage. Also, one of the Mennonites at a hardware store is requesting a microprocessor-based grain dryer controller, which might become one of several entrepreneurial opportunities I’ll have while down here in Belize.

Being here with my Uncle is like having a personalized electronics tutor. I have been learning about electronics pretty much non-stop the last few days, and my brain has sometimes been in information overload mode. I have been learning all sorts of things about power electronics lately, which my uncle is currently writing a book on.

Anyway, I have a lot more to say, but I’ll save it for a future post. I will at least attempt to write once in a while, and I’ll try to upload images some time.

Graduated

Hello to all… Yesterday I finally graduated with a BS in Electrical Engineering after 2½ years at the University of Washington, Seattle. I don’t know if it would have been possible without the support of my friends and family, and especially my Mom and Dad. Anyway, here’s a small selections of photos from yesterday…

IMG_0145 IMG_0211
Left: In front of Suzallo Library.

Right: Me with Dr. James Peckol, with who I’ve had for a total of four classes, EE 271, EE 399, EE 472, and EE 478. He has a reputation of being one of the most demanding professors in (especially in regards to documentation), although, he perhaps prepares you better for industry than most professors.

Now that I’ve graduated, I have to now do a lot of organization, moving, and preparing for my Summer ventures to Central America for a while.

Last day at RPC

Yesterday was my last day as an organist at Resurrection Presbyterian Church, after 2½ years of providing services on the piano and organ. Members of RPC threw on a really nice reception for me, where I was given a farewell greeting. Thanks for everybody who put this together!

The reason I’m leaving is because I will be interning in Cayo, Belize, with my uncle, who is the head of a small Electrical Engineering company, Innovatia Laboratories. It’s pretty much an internship, and I’ll be getting personalized training from him. As of now, I’m not sure how long I’ll be down there, but it’d be too much of an expense to fly up and play every Sunday. Although I’m not leaving until some time mid-July, these next couple weeks are packed with busy work for all my classes (if you haven’t noticed by my other blog posts). I have to think about moving out of my apartment into storage, and figure out a way to get down there.

It has been my pleasure working with Pastor Scott. Now Saturday nights and Sunday mornings feel a bit awkward, since all the days of waking up super early to set up and practice and talk to Brooke for half an hour are now over. I’ve received a lot of positive feedback over the past couple months. I will definitely miss working there, and hopefully, I will find a similar job in the future. My goal is that as long as I’m alive, there will be at least one church with good music and good theology. Maybe one day, if I find a stable job in the Seattle-Tacoma area, I will be able to use my talents once again at RPC.

Spring Quarter, 2010

Hello, friends and family,

It’s mid-quarter now, and it’s my last quarter at the University of Washington. There will be a department celebration on Friday, June 11, at 7:00 in Kane Hall, room 130. You need a ticket to get in, and I’m allowed to give out 3 of them; there might possibly be more available in the future. The University Graduation is on Saturday, June 12. If you want a ticket, let me know, and I’ll try to get one for you. More details could be found here: http://uwgraduation.com/.

Lately, I’ve been sprucing up my résumé and cover letter, and I’ve been looking into all sorts of employment opportunities. I’m trying to find somewhere preferably in the area. Sometime this Summer, I may be heading down to Belize to intern for Innovatia, my uncle’s company, during which time I will be put on interesting projects, hopefully to build up an eye-catching résumé for when I return.

This quarter, I’m only taking one engineering class, EE 478, which is the capstone course for embedded computing systems. It’s been proving enough of a workload, especially since one of my lab partners decided he didn’t want to come to class or participate in group meetings. So I’ve been working hard to keep up with only one lab partner; but we’ve been pulling along alright. EE 478 does have a reputation as being one of the most time-consuming classes at the University of Washington. It even has its own Facebook page! My professor Dr. Peckol is known for his high expectations, especially on his lab reports, which tend to average around 50 pages each. Overall, in the four classes I’ve taken with Dr. Peckol, I must have written well over 500 pages of lab report; and more still to come!

Me

This past week, we had due a project to design a microcontroller-based scanning and imaging system to be mounted on a probe to be used for extra-planetary exploration. This probe has three cameras and a 2-Kbyte SRAM partitioned into two buffers. When one buffer is full, the contents are uploaded to a ‘mother ship’, then transmitted to an Earth data collection center. This lab was just an introduction to the PIC16F877a microcontroller, and to synchronous and asynchronous communication, namely I2C and RS-232 (which you wouldn’t use for space exploration). Anyway, after pulling some overnighters, we got our circuit working perfectly. Besides that, we Here is what it looks like:

I’ve learned in the past week that troubleshooting the PIC could be at times time consuming. A couple times during this project, we narrowed down to problems to lines of code that look perfectly normal, but cause the PIC to crash for some reason. The PIC controller has a lot of quirks that if you’re not familiar with them, could lead you to pull your hair out wondering why the processor keeps crashing. The most time consuming problem we faced is when we discovered that the breadboard we were using at the time was broken, and wasn’t connecting things together properly.

The last few weeks of class, I’m going to be working on the EE 478 final project, which entails creating a fairly complex embedded system. My lab partner and I are thinking about using one of the Amtel synth chips (particularly, the ATSAM2195) to create a musical instrument. I was thinking about tearing apart a cheap keyboard, and then designing the system that generates MIDI inputs for the chip. We’re in the planning phase right now, but there’s many ways we’re planning to increase the complexity of the system if we so desire. These projects tend to cost people around $200 to $300 for parts.

Anyway, I’ll try to blog more often when something pops to mind. Take care.

Fall Quarter

Unfortunately, this is one of those blog posts where nobody knows what I’m talking about, so feel free to not waste your time trying to read it.
Anyway, I took three engineering classes for Fall 2009 Quarter; EE 341 – Discrete Time Linear Systems, EE 473 – Analog Integrated Circuit Design, and EE 476 – Digital Integrated Circuit Design. In EE 341 – Discrete Time Linear Systems, you pretty much cover many of the principles needed for most audio, image, and video processing. The course pretty focuses on applications of Z-transforms (which are Laplace Transforms for discrete signals), Discrete Fourier Transforms, Discrete Time Fourier Transforms, and Discrete Time Fourier Series.
In EE 473 – Analog Integrated Circuit Design, you essentially learn how to create amplifiers using 23 nm CMOS technology. For our final project, we developed an 80-dB fully-differential amplifier with several design specifications for input and output capacitance, phase margin, power consumption, output swing, and unity-gain frequency. We used a folded-cascode topology with a common-source second stage, biased with low-voltage cascode current mirrors. The circuit also implemented common-mode feedback, which we just included as a couple resistors and an ideal op-amp, and also Miller compensation. Unfortunately, we only had one week to do the project, and we ran into a pretty time-consuming problem, but eventually we got something that met most of the specifications after a rather frustrating overnighter. We could have done better if we had a little more time.

In EE 476 – Digital Integrated Circuit Design, we worked on a 45 nm CMOS process. Our final project was to design an arbiter circuit in behavioral Verilog, then using software tools to convert the Verilog code into logic gates. We drew out a series of 9 logic gate standard cells, with which we actually drew out all the transistors and connecting metal layers, and used an automated process to convert the logic gates into a layout using standard cells. Below is our resulting integrated circuit, which measures only 15 x 15 μm², consists of 91 standard cells, for a total 362 transistors.

Here is our design for just one of the standard cells, the D-Flip Flop, which measures 1.235 x 3.23 μm². A Flip-Flop is essentially a memory storage cell, which holds one bit of information.
D Flip-Flop Schematic
Layout of the D Flip-Flop
It would take a long time to explain what’s going on here. All the blue rectangles are the lowest metal layer, the pink rectangles are the second metal layer, all the red rectangles are polysilicon (used for the gates for transistors), the W’s indicate the p- or n-doped wells, the triangles indicate p- or n- heavily doped regions. The layout image directly translates to the schematic above. Each of the colors represents a different mask during the manufacturing process. Since it costs well over a million dollars to manufacture an integrated circuit, we mostly relied on simulation software to test our design.
Most of the work in this quarter was learning how to use the Virtuoso design suite to design and simulate our circuits. Unfortunately, the University of Washington file servers were running extremely slow, and so we wasted a lot of time waiting for the mouse to catch up. It was also frustrating, since there were three classes all trying to use the University of Washington’s only 20 Linux computers at the same time.

New Apartment

Hello, everyone;

Yet again, I need to apologize for not blogging in a really long time. Time just tends to fly between posts, and being in Engineering, it feels like I can never find any leisure time to update.

I just moved into my new apartment in the last week. I promised I would upload some photos of my new place. I decided to move off campus for several reasons. One of the primary reasons is that the UW Housing and Food Services decided on a new rule that if you live in the residence halls, you have to subscribe to the university meal plan. The food really isn’t that great, and it is way overpriced. To illustrate, for a simple breakfast of a waffle, scrambled eggs, bacon, and orange juice, you can be charged over $10. I found myself in the habit of eating out every day, since it was cheaper and higher quality than provided by the HFS.

So after a week of searching, a fellow Electrical Enginner colleague and I found a good 2 bedroom apartment at Travigne Apartments. Our place is located on 11th Ave in the University District. After spending a week of searching, we decided on this apartment, since it is unusually high quality for the low price. I’m paying just a little more than I was for the residence halls, but now I am able to cook for myself, plus it is a significant increase in quality.

Main entrance

Our apartment is the one with the balcony on the top floor.

Inside the lobby area

Coming out of the elevator, our apartment is the first door on the left.

My futon, which until just recently, served as a bed rather than a couch. I got the blanket when I was on my first deployment with the USAF to Qatar.

Bookshelf containing the textbooks my roomate and I have been accumulating over the years, as well as leisure reading.

Looking outside to the balcony

Looking down from off the balcony.

My roomate’s grill, so we could eat lots of barbecue.

 

Kitchen area

The coffee pot, which is now used primarily for making tea since I quit coffee.

My desk and dresser area

My bed.

The apartment opens up rooftop access to the residents.

Views from the roof of the apartments. Blessed Sacrament Church (catholic), and a view of downtown Seattle and space needle.
Right now, I’m taking the Summer off from school. I began the Summer Quarter out taking a full load of classes, although I began to have really bad anxiety attacks for some reason while performing coursework. I think the main causes for this anxiety are because for Spring Quarter, I was pushing myself too hard, pulling too many overnight study sessions, and drinking coffee. This combination can make you really go crazy after a while. A couple weeks ago, I decided to quit drinking coffee, because I think that was the main culprit. After I quit coffee and went through a period of withdraw, I felt a lot better.
Now that I’m off, I intend to catch up with a lot of things that due to my course load, I never really could find much time to do: reading, learning new music, exercising, research employment opportunities and organizing unsorted computer files and stacks of papers. I’ll also be looking for Summer jobs painting and doing yard work.
I intend to be complete with all my coursework after Spring Quarter next year, and I will have a Bachelor’s of Science in Electrical Engineering. This next year is going to be my toughest year, since from the looks of it, I have a capstone design class every quarter. I’m intending on getting completing at least two areas of knowledge in the next year in Embedded Systems and Analog Circuit design, and if I feel like it’s not too much, attempt VLSI (Very Large-Scale Integration).
A couple weeks ago, I got called last minute to put together music last minute for a wedding. Due to a misunderstanding, the organist who was expected to do the wedding wasn’t in town for that day, so I was called up as a last resort a week before the wedding. I pretty much chose out all the music, and I got together with a good friend who plays the violin, and we put together a prelude. I recycled pieces I had used for another wedding a couple years ago on Bremerton Naval Base, and tried a couple other pieces that I used for Resurrection that I thought would work. Overall, I got very positive response for the music, so I was glad I could help out and remove that burden from the family.
Speaking of weddings, congratulations to my sister Rachel for her recent engagement to Alex! She is getting married on January 2 at Faith Presbyterian Church. May God shower his blessings on both of you.
In September, my Dad and I are once again hiking the Wonderland Trail (110 mile hike around Mt. Rainier), and we’re planning to spend a week doing that, so I’m trying to put together camping trips and day hike trips to make sure I’m in shape for that. Later this week, I will be at Eagle Creek for two days with my dad and some good friends.
Anyway, that is my spiel for the time being. I’ll try to update more often, although when classes pick up again, I really won’t have any time, so I’ll apologize in advance for not posting in so long, and I hope you understand.

Update

I just happened to notice that my blog was horribly updated, and my last post was from back in August. Last year I took a web programming class to motivate me to create a really decked out web page, but it only taught me that it’s way too time consuming and too much effort. So here I am, using Blogger.com still.

I’m now on Skype, which seems like a really nifty online phone service. If you want, you can reach me with my user name, jfeucht82, and I’ll try to leave it on as much as possible. My philosophy is that I should pay as little on telephone communication as humanly possible. If you’ve ever tried calling me, you’ve probably noticed that I rarely carry my phone on me wherever I go, and I respond to email a lot faster than I do via telephone. I currently own the cheapest AT&T pay-as-you-go phones I could possibly get, and it’s malfunctioning because the ringer doesn’t work anymore for some reason.

I was just looking through my online degree audit (or a listing of classes you still need to graduate), and I figured if I take the right classes, I might be able to graduate the end of Spring Quarter in June. I’ve been following mostly the program requirements of VLSI (Very Large Scale Integrated) Circuits, although the final courses I would need for that program aren’t offered until the Summer or Fall quarter. On the other hand, I could take two engineering courses next quarter, and be done with the program requirements for Embedded Computing Systems, which is another field I have quite a bit of interest in. And I kind of want to exhaust the funds in my GI bill before I get out of the University of Washington, and I have funds to cover me through Fall Quarter this year, if I take classes over the summer.

So that’s something I’m going to have to start thinking about. I’ve been prettying up my résumé and cover letter for possible internships and jobs coming up, and I have some career fairs to attend…

This quarter, I’m taking two engineering courses, and a writing course (I have to take two technical writing courses). I’m also taking my first 400-level UW course, E E 471 Computer Design and Organization. This class seems like it’s going to be quite a bit of work. We’re learning how to design our own microprocessor using Verilog, which is a computer language designed specifically for modeling digital circuits. Over the course of four lab assignments, we will design critical components of the processor. The class pretty much deals with figuring out how a processor processes machine code, and how all the components in a processor interact with each other.

The other engineering course I’m taking is E E 332 Devices and Circuits II, which is a continuation of an engineering class I took last quarter. This class deals primarily with designing circuits with BJTs (Bipolar Junction Transistors), which are pretty much electronic parts that amplify signals. Our final design project is to design and build an audio amplifier.

Anyway, that’s all I have to say for now. Sometime in the near future, I might come up with something that’s actually interesting to talk about and blog about it, but as for now, if you’re too bored, you can check out my AC to DC in my previous post and marvel at how incredibly interesting it is.

Summer Break

I’m out of school until the 24th of September, which means I have time to spare until then… I figured I have time to make another contribution to the blogosphere. During the break, I have yard projects I am doing for my parents, I’m working on several organ and piano pieces, read, blog, and try to get my window fixed on my car (finally!!!) I’ve been waiting so long because I had a ton of large expenses due by the end of August, including annual health insurance, car insurance, rent, and vehicle registration renewal, so I wanted to make sure those were paid off first. The temporary window I fabricated out of clear packing tape (which I consider to be a milestone in my fledgling engineering capabilities) continues to serve it’s purpose extraordinarily well.

I did a bike ride up to Sunrise on Mt. Rainier the other day with my Dad and a friend from Church. I haven’t been much of a bike rider, especially since my bicycle was vandalized at the University of Washington. I was using my Dad’s ‘rain bike’ for this ride, but I am thinking about getting another one some day when I don’t have a lot of expenses due and it’s relatively good weather. Ever since my dad had stents placed in two constricted arteries, he has taken up bicycling, and even completed the Seattle-to-Portland this year.

End of Summer Quarter

Hello, friends and family!

It’s been several months since I last posted. This summer has been pretty laden with school work. This quarter I took two classes, E E 271 Digital Circuits and Systems, and IND E Probability and Statistics for Engineers. This is the second time I’m taking a Statistics class; the first I took at Pierce Unfortunately, the credits didn’t transfer for the course. The courses were pretty much the same material, except for that the one I just took uses a little bit more advanced mathematics…

For the past two weeks, I have been spending long hours and late nights working on a final project for my engineering class. The project is to design and build a game using digital logic. We were given a list of 9 different project ideas (or you could create your own). Here is the description for the particular game we chose:

This game involves dealing with some disgruntled chemistry and aero students who have teamed up and have taken over Bagley Hall. The are dropping balloons filled with synthetic and noxious scents…raspberry, strawberry, eau de skunk, greasy hamburger, cold pizza, Budweiser, oops InBev, …oh retched…, on the people passing below. Your mission is to stop this olfactory attack as quickly as possible.

This game is played on a 4 by 4 grid. Balloons are randomly loaded at the top of the grid and fall to the bottom. You can move a paddle left or right to block the balloons and thus prevent them from bombarding the folks below. If 3 balloons hit, the scent police haul you off to work in a paper company for the summer.

My instructor, Dr. Peckol, obviously has a really dry sense of humor. Anyway, my lab partner and I decided to build the project on an 8 by 8 grid, since there were compact dual color 8 by 8 LED (light-emitting diode) Matrices available at the UW parts store. The biggest challenge of the project was figuring out how to get the LED Matrix to work. Here is a schematic of the LED Matrix taken from the data sheet:

Since most of my readers aren’t familiar with electronics, all of the triangle/line things are diodes, meaning that current can only flow in the direction of the arrow. When you apply a positive voltage to any column, and ground any row, current is allowed to flow through the diode at the intersection between the selected row and column. The problem is, how do you get two lights on at the same time that aren’t in the same row or column? If you applied voltage to two of the rows and grounded two of the columns, you will have four LEDs shining, not two.

The trick to using an LED matrix is only having one column on at any time, and cycling through the columns at high frequency. The human eye can only notice a flicker of up to 50 Hz, and due to one of the properties of the human eye known as persistence of vision., an LED needs to be on for only nanoseconds in a 50 Hz cycle in order to appear as though it is continuously on. In our project, we have up to three objects on the screen during the course of the game, although the column and row display drivers cycle through displaying only one object on the screen at any given instance. We built a 555 Timer circuit outputting a pulse of 6.9 kHz, which is used to cycle through the objects on the screen.

Here is a block diagram of our game design:

The larger components of the circuit, including the Control, Sequencer, Row Driver and Column Drivers, were written in structural Verilog (programming language), then written onto generic array logic (GAL) chips. The random bit generator is a 3-bit linear feedback shift register, which is a common method for generating pseudo-random numbers. Here is a photo of the final circuit:

Well, I won’t go too much deeper into all that boring electronics and stuff… I could go on for 26 pages (that’s how long our lab report ended up being). Here it is in action!

There is one glitch in the final version I discovered last minute that I think is an easy fix… Once in a while, a balloon skips a row. I think this is because the clock signal to the Sequencer module has a race condition.

Anyway, that was my project. Digital Circuits is really a fun class. I get a month-long Summer break, so I think I’ll do some hiking trips and some other fun things. Next quarter, I’m taking E E 331 Devices and Circuits I, E E 361 Applied, and Electromagnetics, and AMATH 301 A, Beginning Scientific Computing. It’s not going to be an easy quarter! 🙁